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Abstract In order to improve poly(vinyl chloride) (PVC)

thermal stability, poly(vinyl butyral) (PVB) matrix and

calcium carbonate nanoparticles were incorporated in

plasticized PVC. Thermal properties of these composites

were investigated by thermogravimetry analysis coupled

with mass spectrometry and Fourier transform infrared

spectroscopy (FTIR). This approach highlighted the effi-

ciency of both PVB and CaCO3 as HCl scavengers by

postponing both the onset degradation temperature and the

HCl release. Moreover, a synergetic effect was evidenced

regarding the HCl release. Finally, kinetic parameters of

the PVC first degradation stage, determined using the

Flynn–Wall–Ozawa’s method, revealed a significant

increase of the activation energy by incorporation of

CaCO3 in the presence or not of PVB.
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Introduction

Polyvinyl chloride (PVC) has been widely used as an

important commodity plastic for many years due to its non-

flammability, excellent corrosion resistance, electrical

insulating properties, abrasion resistance, and low cost.

However, the main drawbacks of PVC are related to its low

thermal stability during its processing and use, release of

chlorhydric acid being dramatic for many applications.

Under nitrogen, PVC thermal degradation occurs in two

major mass loss steps [1–4]. The first stage of the process

consists in a dehydrochlorination sequential reaction

(Scheme 1), including initiation, propagation, and termina-

tion steps. Initiation of the reaction comes from structural

defects of PVC backbone, such as tertiary chlorides and

allylic chlorides formed during polymerization and results in

HCl release and formation of double bonds. During propa-

gation step, these groups elongate into allylic chain very

rapidly into polyene sequences. Both initiation and propa-

gation steps involve either ion pairs or quasi-ionic concerted

mechanism (Scheme 1). Termination step mechanism still

has to be clearly identified. However, it is supposed to

involve reactions such as intermolecular or intramolecular

Diels–Alder cyclizations of the polyene sequences yielding

to aromatic compounds (Scheme 2). An important aspect in

the thermal degradation of the PVC is the autocatalysis of the

dehydrochlorination step, which certainly occurs via a rad-

ical-cation mechanism [5]. According to Starnes et al. work,

when the concentration of HCl and polyenes have reached a

certain level, these products react to form polyenyl cation

radicals that leads to autocatalysis. More precisely, proton-

ation of polymer and/or polyene sequences, formed after HCl

release via ionic or quasi-ionic mechanism followed by

thermal excitation, yields to cation diradicals and/or mono-

radicals as shown in Scheme 1. The presence of these radi-

cals was also evidenced by Han and Elsenbaumer [6]. Since

these cation radicals are able to abstract an hydrogen atom

from the polymer, they play an essential role in the autoca-

talysis process of this first degradation step.
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In order to improve PVC thermal stability, many efforts

have been made to eliminate structural defects created

during polymerization process. However, even if elimina-

tion of these irregularities, by changing the polymerization

process or by special treatments of the polymer matrix, can

improve PVC thermal stability, degradation occurs at low

temperature from normal monomers, and specific stabiliz-

ers must be used. Two approaches can be considered to

enhance PVC thermal stability: by adding barrier proper-

ties [7, 8] and by HCl trapping. Additives such as metallic

carboxylates [9–11], basic compounds [12], organotin

compounds [13], epoxy compounds [14], and fully organic

compounds [15–17] are commonly used.

These stabilizers can act according two ways:

– by reacting with labile chlorine atoms in PVC chain,

such as allylic or tertiary chlorines, preventing further

dehydrochlorination. This process should be faster than

the chain propagation itself and thus requires a very

active nucleophile. As these stabilizers prevent the

formation of conjugated double bonds in the polymer

matrix, they are called primary stabilizers,

– by scavenging the hydrogen chloride formed during

degradation of the polymer. By scavenging HCl, this

kind of stabilizers avoids the autocatalytic degradation.

Because they cannot prevent the deshydrochorination in

its early stages, they are referred as secondary stabilizers.

However, some of them are toxic and cause environ-

mental problems, as most of them leave toxic residues

during their degradation. More recently, several alterna-

tives, like binary blends containing poly(vinyl butyral),

poly(acrylonitrile butadiene styrene), poly(methyl meth-

acrylate butadiene styrene), poly(methyl methacrylate) [18,

19], copolymers of poly(vinyl chloride-co-vinyl acetate)

[20], or incorporation of nanocharges such as layered sili-

cates or calcium carbonate [21–23], have been studied

especially to limit or delay the dehydrochlorination process

for their different stabilizing modes. In this study, effect of

poly(vinyl butyral) and calcium carbonate and their com-

bination on plasticized PVC thermal degradation have been

investigated using thermogravimetry. Miscibility of PVC

and PVB has been reported in the literature. Mohamed

et al. [18] have found that non-plasticized PVC and PVB,

prepared by mixing in THF, were miscible since the glass

transition temperature of the blends were in correlation

with the Fox equation. However, this result has been

controversial by Peng and Sui [24] in which they found

only a fully miscibility up to 10% PVB content in PVC,

and for higher content only a partial miscibility in the case

of blends prepared by the phase inversion method. These

contradictory results can provide from different used raw

materials (polymers differing by their molecular weights,

their polymerization production, tacticity), and blending

methodology. In the present study, all the materials have

been prepared by melt compounding using process addi-

tives relative to PVC matrix. Due to the presence of DEHP

as plasticizer, Tg values of the PVC/PVB blends, obtained

from DSC analysis (not shown here), were too near to

determine the presence of one or two glass transitions and

thus to evaluate the miscibility degree of the constituents.

Regarding the thermal properties, not only a stabilizing

effect and chorine scavenger property have been evidenced

for both PVB and CaCO3, but a synergetic stabilizing

effect has also been highlighted by delaying both the

degradation temperature and much more significantly the

hydrogen chloride release. Thermal degradation of all

studied materials has been investigated using thermo-

gravimetry–mass spectrometry–Fourier transform infrared

(TG–MS–FTIR) coupling technology that constitutes a

powerful tool for studying the composite thermal stability

and by determining the volatile species evolved during

material degradation [25–27]. As HCl plays a catalytic role
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in PVC thermal degradation, it has been important to fol-

low its ion fragment by mass spectrometry during thermal

measurement to evidence the efficiency of employed

additives. Moreover, this technique is effective in identi-

fying the stabilization mechanism of used additives.

Finally, in order to determine kinetic parameters of the first

degradation step, Flynn–Wall–Ozawa’s model was applied.

Experimental

Raw materials

Both poly(vinyl chloride) (PVC) and poly(vinyl butyral)

(PVB) used in this study were purchased from Scientific

Polymer Products, Inc. Their molecular masses were about

120,000 and 180,000 g mol-1, respectively.

PVB is commercially prepared by an acid-catalyzed

butyraldehyde condensation with poly(vinyl alcohol)

(PVA). Since this reaction does not proceed to complete

conversion to PVB and since PVA is obtained by hydro-

lysis of poly(vinyl acetate) (PVAc), commercial PVB

contains a certain proportion of these three polymers and

corresponds exactly to the ter-polymer poly(vinyl butyral-

co-vinyl alcohol-co-vinyl acetate), with 11% of poly(vinyl

alcohol) and 1% of poly(vinyl acetate) (Fig. 1).

Process additives, di(2-ethylhexyl) phthalate (DEHP)

and zinc stearate (Zn(St)2), were provided by Scientific

Polymer Products. Calcium carbonate nanoparticles (Socal

312V) were supplied by Solvay. All materials were used as

received.

Sample preparation

All samples were obtained by compounding PVC and

PVB powders, processing additives (30 phr of DEHP and

5 phr of Zn stearate) and/or CaCO3 nanoparticles (3, 5,

8, and 10 phr) in a twin-screw extruder (DSM Xplore 15

Microcompounder). All of these compounds were melted

at 170 �C for 5 min at 200 rpm (rotor speed) under

argon.

Characterization

Morphology of nanocomposites was analyzed by trans-

mission electron microscopy (TEM). TEM observations

were performed with a Phillips CM100 equipment using an

acceleration voltage of 100 kV. Ultrathin sections of

composites (ca. 80 nm thick) were prepared at -130 �C

with a Reichert-Jung Ultracut 3E, FC4E ultra-cryomicro-

tome equipped with a diamond knife.

Thermogravimetric analyses (TG) were performed

under nitrogen flow (100 mL min-1) at a heating rate of

10 K min-1 from 30 to 700 �C with a STA 409 PC from

NETZSCH. The measurements were repeated three times

for each sample to confirm the results. The thermo-

gravimetric measurements were coupled with a quadru-

pole mass spectrometer (MS) Aëolos 403C from

NETZSCH and a Fourier transform infrared spectropho-

tometer (FTIR) TENSOR 27 from BRUKER to identify

the species evolved from the sample during the ther-

mogravimetric experiments. Thermogravimetric mea-

surements have also been performed at several heating

rate (5, 10, 15 and 20 K min-1) for degradation kinetic

investigation.

Results and discussion

Nanocomposites morphology

TEM micrographs (Figs. 2, 3) of PVC nanocomposites

exhibit a good dispersion of CaCO3 nanoparticles. How-

ever, despite the stearic acid as surface modifier of the

particles, numerous agglomerates were observed. In Fig. 3,

O O

PVB 
(88%)

OH

PVA 
(11%)

O O

PVAc 
(1%)

n

m
o

Fig. 1 Chemical structure of commercial PVB

Fig. 2 TEM micrographs for plasticized PVC/CaCO3 composites

containing 3 phr (a), 5 phr (b), and 8 phr (c) of nanofillers

Fig. 3 TEM micrographs for plasticized PVC/PVB/CaCO3 compos-

ites containing 10 phr of PVB and 3 phr (a), 5 phr (b), and 8 phr (c)

of nanofillers
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white areas correspond to PVB matrix around which

nanofillers tend to aggregate due to interactions between

stearic acid modifier of nanoparticles with polar functional

groups of PVB. The presence of these phases highlights the

non-miscibility of plasticized PVC with PVB.

Thermal degradation of composites

Thermal stability of all blends and composites has been

investigated by thermogravimetry coupled with mass

spectrometry and FTIR spectroscopy simultaneously.

Table 1 summarizes the onset degradation temperatures,

and temperatures of HCl release determined by following

m/z = 36 from MS analysis during TG measurement.

Thermal degradation of plasticized PVC

It is well known that thermal degradation of pristine PVC

occurs in two major mass loss steps related to a first

dehydrochlorination reaction yielding to hydrogen chloride

release and formation of highly reactive polyene sequences

which undergoes chain cracking in a final step. However,

in the presence of a plasticizer, the main kinetic parameters

and temperatures of reactions are commonly changed. For

plasticized PVC, a complex multi-step process of the

thermal degradation has been highlighted by several

authors [28, 29]. They reported that the first region of

degradation is most likely associated with migration of

plasticizer, first lost from the surface and then from the

bulk. More precisely, investigations of the migration of

DEHP in PVC under heating by depth analysis using FT-IR

spectroscopy lead to the conclusion that depth profiles

depend on the stabilisers used [29].

According to our approach, TG curve and its derivative

(Fig. 4a) showed that thermal degradation of DEHP-plas-

ticized PVC occurs in three major steps. FTIR (Fig. 4d1

and d2) and MS spectra (Fig. 4b) did not highlight a

migration of the plasticizer, but evidenced that HCl,

released during the first PVC degradation step, quasi-

immediately reacts with the plasticizer to hydrolyze it and

to form the corresponding monoester (monobenzylphta-

late). This result was also been observed by Jackson and

Rager [30]. After this reaction, degradation of plasticized

PVC occurs similarly to non-plasticized PVC.

Thermal degradation of plasticized PVB

Plasticized PVB revealed a two-stage degradation (Fig. 5).

At about 240 �C, MS spectra (Fig. 5d1) evidenced the

release of butyraldehyde (m/z = 72) immediately followed

by elimination of carbon dioxide (m/z = 44), acetic acid

(m/z = 60), benzene (m/z = 78), and water (m/z = 18). As

described by numerous authors, PVB degradation involves

elimination of the butyral, acetate and alcohol functional-

ities present in the polymer [31, 32].

Butyraldehyde elimination has been proposed according

an intramolecular mechanism, yielding majoritary to but-

anal but also to butenal, and dihydrofuran (Scheme 3). The

process also creates polyene sequences that subsequently

form aromatic compounds by free radical mechanisms.

The main degradation process of vinyl alcohol moities

of PVB occurs through a dehydration reaction yielding

water release, but can also result in the formation of

aldehydes and ketones via free radical hydrogen abstrac-

tions (Scheme 4) [33].

The acetate functions are eliminated from the polymer

backbone in an autocatalytic reaction (Scheme 5) [34, 35].

This results in the formation of acetic acid (m/z = 60) and

polyene sequences in which double bonds will catalyze the

deacetylation.

Polyene sequences formed by degradation of butyral,

hydroxyl, and acetate functions fully degrade at higher

temperatures.

At higher temperature, from 400 �C (Fig. 5d2), FTIR

spectra reveal the volatilization of non-degraded DEHP.

In the following experiment, m/z = 72 ion fragment

related to butyraldehyde will be considered as character-

istic to PVB degradation.

Thermal degradation of plasticized PVC/PVB blends

Influence of PVB content on PVC composite thermal sta-

bility has been investigated (Fig. 6 and Table 1). Both a

Table 1 Onset degradation temperature (Tonset) and HCl release

temperature (THCl) of PVC composites, evaluated from thermo-

gravimetric measurements

Sample Tonset/�C THCl/�C

Plasticized PVC 205 208

Plasticized PVB 287 /

PVC/10 phr PVB 221 221

PVC/20 phr PVB 227 230

PVC/30 phr PVB 228 235

PVC/40 phr PVB 231 238

PVC/50 phr PVB 238 249

PVC/60 phr PVB 244 253

PVC/70 phr PVB 255 262

PVC/80 phr PVB 271 284

PVC/90 phr PVB 282 /

PVC/3 phr CaCO3 210 215

PVC/5 phr CaCO3 212 220

PVC/8 phr CaCO3 216 226

PVC/10 phrPVB/3 phr CaCO3 222 255

PVC/10 phrPVB/5 phr CaCO3 223 264

PVC/10 phrPVB/8 phr CaCO3 226 267
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delay of the mass loss (Tonset) and the release of HCl (THCl)

have been evidenced with the increase of PVB amount.

Moreover, TG curves evidenced a different PVB degra-

dation mechanism in the presence of PVC through a lower

PVB moiety degradation temperature and a significantly

higher residual mass at the end of blend degradation.

According to the derivative curve of TG, PVC/PVB

binary blends (Fig. 7a) exhibited a three main stages deg-

radation. However, analysis of the volatile species evi-

denced four steps over the range of temperature 200–

350 �C. During the first step, that exhibited a high reaction

kinetic, MS spectra (m/z = 72 on Fig. 7b) and FTIR

spectra (Fig. 7d1) evidenced the degradation of PVB

matrix. This step was quickly followed by a second stage

involving the degradation of PVB and PVC, highlighted by

release of butyraldehyde (m/z = 72 on Fig. 7b and d2),

CO2 (m/z = 44 Fig. 7b), H2O (m/z = 18) and HCl (m/z =

36 and Fig. 7d2). Figure 7d3 showed the subsequent deg-

radation of the plasticizer by reaction with HCl. PVC being

the most important polymer in mass, a last stage consisted

in only HCl release (Fig. 7d3). When we compare both

onset degradation and HCl release temperatures for

plasticized PVC and plasticized PVC containing 10 phr of

PVB (Table 1), a stabilizing effect was highlighted. Mo-

hamed et al. reported a stabilizing effect of PVB on PVC

degradation by radical substitution of chlorine atoms on

PVC chain by PVB, yielding to the release of acetic acid

providing from acetate groups elimination [18]. Moreover,

they have suggested the HCl trapping by CH3COOH to

form CH3COCl. In our case, the used PVB contains only

1% of acetate groups, suggesting the contribution of other

groups, especially butyral moieties which undergo catalytic

acid hydrolysis by HCl leading to simultaneous release of

butyraldehyde. However, similar to the previously descri-

bed PVB degradation reactions, the mechanism can be

assumed mainly radical.

Thermal degradation of plasticized PVC/CaCO3

nanocomposites

Figure 8 shows the TG curves of plasticized PVC con-

taining CaCO3 nanoparticles. As also reported by Chen

et al. [36], a slight delay of onset degradation temperature

was evidenced (Table 1) and increased with the nanofillers
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content. Moreover, following m/z = 36 ion fragment by

mass spectrometry (Fig. 9b), related to HCl release, high-

lighted an even more significant delay of the HCl release

temperature compared with pristine plasticized PVC. This

result evidenced the HCl scavenger effect of the particles

during PVC thermal degradation.

Furthermore, in pristine plasticized PVC, chlorine

evolves as soon as the degradation process begins (Fig. 6)
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whereas in the presence of CaCO3 nanoparticles, HCl is

released about 10 �C later. Elimination of HCl was then

replaced by carbon dioxide and water (Fig. 9b), as shown

by mass spectrometry through m/z = 44 and 18 fragments

respectively, and by FTIR spectroscopy through

vibrations bands in the range of 4,000–3,500 cm-1 and

1,600–1,500 cm-1 (not shown here). This result evi-

denced the stabilizing reaction that occurs between

nanoparticles and evolved HCl [37–39]:

CaCO3 þ 2HCl$ CaCl2 þ H2Oþ CO2

This acido-basic process to trap the HCl molecules formed

during PVC dehydrochlorination leads to a stabilizing

effect on the dehydrochlorination. Moreover, Starnes et al.
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have reported that dehydrochloration autocatalysis

involved cation radicals formed by protonation of polyene

and polymer chains (Scheme 1) [5]. By trapping HCl and

thus the acid proton, CaCO3 particles could act at this level

to avoid the subsequent formation of the radical and to

limit consequently the degradation catalysis.

Thermal degradation of plasticized PVC/PVB/CaCO3

ternary systems

Effect of incorporation of both previously studied moieties,

PVB and CaCO3 nanoparticles, has been investigated with

the same methodology (Figs. 10 and 11); results are sum-

marized in Table 1.

As it could be expected, both onset temperature and HCl

release were delayed. Moreover, mass spectra showed that

chlorine signal shifted significantly by incorporation of

both moieties PVB and CaCO3 nanoparticles. The delay is

significantly higher than in the presence of one or the other

moiety.

In the first step, MS spectra (Fig. 11b) revealed the

release of both the m/z = 72, 44 and 18 ion fragments,

characteristic of the stabilizing process by PVB and CaCO3

respectively. This result, confirmed by FTIR spectra

(Fig. 11d1), indicated that these both moieties act as sta-

bilizers at the same time. Secondly, ion fragments of PVB

degradation products decreased, corresponding to a total

PVB consuming whereas CaCO3 nanoparticles played still

the role of HCl scavenger (Fig. 11d2). At this time, HCl

lead to degradation of DEHP into MEHP as shown by

FTIR spectra (Fig. 11d3).

It is important to note that a clear synergetic stabilizing

effect on HCl release was obtained when both PVB and

CaCO3 nanoparticles were incorporated in PVC. This can

be explained by two hypotheses. First, a better dispersion

of smaller phases of PVB (Fig. 3a) occurs in the presence

of CaCO3 nanoparticles through a viscosity increase of the

mixture, yielding to a better shearing efficiency during the

elaboration process by melt compounding. The second

explanation can be provided by a combined action of these

two moieties, with PVB acting according a radical mech-

anism and CaCO3 particles as acido-basic mechanism.

Then, according to the autocatalysis mechanism described

by Starnes et al., the release of HCl, the formation of the

cation radicals and their reaction should be stabilized. This

hypothesis should be highlighted or rejected by investi-

gating kinetic parameters of the first degradation step.

Thermal degradation kinetic

Activation energy of the thermal degradation of plasticized

PVC and plasticized PVC containing 10 phr PVB and/or

8 phr CaCO3 was determined for the first degradation step

(from 180 to 360 �C) using the Flynn–Wall–Ozawa’s

method (FWO). This isoconversional method exhibits the

main advantage that no knowledge of the degradation

mechanisms is required.

The Flynn–Wall–Ozawa isoconversion method [40, 41]

uses the equation:

log b ¼ �0:457
E

RT
� 2:315þ log

ZE

R
� gðaÞ

where b is the heating rate, E is the apparent activation

energy, Z is the preexponential factor, R is the gas constant,

g(a) is the kinetic model, and T is the temperature read off

from the TG curve for the selected conversion a, where

a = (m0 - m)/m0 (m0 and m are the initial instantaneous

masses).
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Applying the isoconversional FWO method on the first

degradation rate (180 �C up to 360 �C), and by linear

regression analysis, the apparent activation energy was

determined as a function of the conversion degree

(Table 2) and plotted on Fig. 12. For plasticized PVC, the

activation energy curve revealed that E is not constant,
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analysis of plasticized PVC/

PVB/CaCO3 100:10:3 (a)

coupled with mass spectrometer

(b), 3D FTIR spectroscopy (c),

(d) exhibits extraction of FTIR

3D spectra during thermal

degradation stages

Table 2 Values of apparent activation energy (E) for the degradation process in the range of 180–360 �C, according to Flynn–Wall–Ozawa

theory

Fractional mass loss, a/% Activation energy, E/kJ mol-1

PVC PVC/PVB 10 phr PVC/CaCO3 8 phr PVC/PVB10 phr/CaCO3 8 phr

0.05 162.19 – 124.05 161.2

0.1 148.78 169.21 179.98 154.44

0.2 148.28 157.27 183.38 182.23

0.3 152.3 156.79 188.21 180.54

0.4 156.28 157.08 191.94 183.49

0.5 160.63 158.43 195.47 184.3

0.6 161.84 158.92 198.9 184.54

0.7 159.4 157.63 199.05 184.01

0.8 154.28 159.59 206.89 182.11

0.9 159.99 171.55 204.22 182.56

0.95 175.27 201.11 210.9 186.29
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confirming the presence of several competitive reactions.

By incorporation of PVB, the activation energy increased

at the beginning of the process, up to a = 0.4. For higher

values of a ([0.4), the activation energy curve did not

show any significant change compared with E of PVC.

Incorporation of CaCO3 nanoparticles lead to the most

important increase of activation energy (about

40 kJ mol-1). However, as unexpected from TG results,

and temperatures of HCl release, incorporation of the two

stabilizers PVB and CaCO3 did not afford a synergetic

stabilization regarding activation energy. Furthermore,

blending these stabilizers decreased the stabilization

observed with CaCO3 nanoparticles but still increased

significantly the stabilizing effect on the first degradation

stage compared to PVC and PVC/PVB. All these results

should lead to the reject of the hypothesis of a combined

action of PVB and CaCO3, as previously envisaged. Fur-

thermore, it may be interesting to compare kinetic results

with other isoconversional methods, as ever done by Bu-

drugeac et al. [42, 43]. In their study, similar kinetic values

have been obtained for non-plasticized PVC by applying

isoconversional methods, such as Friedman and FWO, as

well as the invariant kinetic parameters method (IKP). This

approach may have a great interest for the composites

considered in the present study since they involve several

competitive reactions during the first mass loss.

Conclusions

PVB and CaCO3 nanoparticles have been evidenced to be

efficient thermal stabilizers for PVC. Coupling thermo-

gravimetric measurements with mass spectrometry and

FTIR spectroscopy gave information on the stabilizing

mechanism of each moiety.

Both PVB and CaCO3 nanoparticles acted as HCl

scavengers and afforded a significant delay of both onset

degradation temperature and HCl release. Incorporating

these both moieties in plasticized PVC not only lead to a

thermal stabilization but also and mostly afforded a syn-

ergetic HCl scavenger effect. The HCl release temperature

was delayed by about 60 �C by an addition of 10 phr PVB

and 8 phr CaCO3 nanoparticles. Moreover, a significant

increase of activation energy of the composites has been

highlighted by applying Flynn–Wall–Ozawa’s model.
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